Peak AAA fatty acid homolog contaminants present in the dietary supplement l-Tryptophan associated with the onset of eosinophilia-myalgia syndrome

Klaus Klarskova, Hugo Gagnonb, Mathieu Racineb, Pierre-Luc Boudreaultc, Chad Normandinc, Eric Marsaultc, Gerald J. Gleichd, Stephen Naylored*

a Laboratory of Mass Spectrometry and Xenobiotics, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
b PhenoSwitch Bioscience, Sherbrooke, Quebec, J1H 5N4, Canada
c Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
d Departments of Dermatology and Medicine, School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
e ReNeuroGen LLC, Milwaukee, WI, 53122, USA

\textbf{A B S T R A C T}

The eosinophilia-myalgia syndrome (EMS) outbreak that occurred in the USA and elsewhere in 1989 was caused by the ingestion of Showa Denko K.K. (SD) L-tryptophan (L-Trp). "Six compounds" detected in the L-Trp were reported as case-associated contaminants. Recently the final and most statistically significant contaminant, "Peak AAA" was structurally characterized. The "compound" was actually shown to be two structural isomers resulting from condensation reactions of L-Trp with fatty acids derived from the bacterial cell membrane. They were identified as the indole C-2 anteiso (AAA\textsubscript{1}-343) and linear (AAA\textsubscript{2}-343) aliphatic chain isomers. Based on those findings, we utilized a combination of on-line HPLC-electrospray ionization mass spectrometry (LC-MS), as well as both precursor and product ion tandem mass spectrometry (MS/MS) to facilitate identification of a homologous family of condensation products related to AAA\textsubscript{1}-343 and AAA\textsubscript{2}-343. We structurally characterized eight new AAA\textsubscript{1}-XXX/AAA\textsubscript{2}-XXX contaminants, where XXX represents the integer molecular ions of all the related homologs, differing by aliphatic chain length and isomer configuration. The contaminants were derived from the following fatty acids of the bacterial cell membrane, 5-methylheptanoic acid (anteiso-C8:0) for AAA\textsubscript{1}-315; n-octanoic acid (n-C8:0) for AAA\textsubscript{1}-315; 6-methyloctanoic acid (anteiso-C9:0) for AAA\textsubscript{1}-329; n-nonanoic acid (n-C9:0) for AAA\textsubscript{2}-329; 10-methyldecanoic acid (anteiso-C10:0) for AAA\textsubscript{1}-385; n-tridecanic acid (n-C13:0) for AAA\textsubscript{2}-385; 11-methyltridecanoic acid (anteiso-C14:0) for AAA\textsubscript{1}-399; and n-tetradecanoic acid (n-C14:0) for AAA\textsubscript{2}-399. The concentration levels for these contaminants were estimated to be 0.1–7.9 μg / 500 mg of an individual SD L-Trp tablet or capsule. The structural similarity of these homologs to case-related contaminants of Spanish Toxic Oil Syndrome (TOS) is discussed.

1. Introduction

In late 1989 the USA Food and Drug Administration (FDA) issued a nationwide alert that advised consumers to stop consumption of manufactured L-Tryptophan (L-Trp) food products. The FDA also reported a recall of all L-Trp dietary supplements sold over-the-counter. The resultant cause of such precipitous action was an outbreak of what became known as eosinophilia-myalgia syndrome (EMS) (Belongia et al., 1996; Belongia, 2004; Eidson et al. 1990; Kilbourne, 1992; Swygert et al., 1990). EMS is a chronic, multisystemic disorder characterized by peripheral eosinophilia and sub-acute onset myalgia (Hertzman et al., 2001; Martin et al., 1990). In the aftermath over 1500

* Corresponding author.
E-mail address: snaylor@rngen.com (S. Naylor).

https://doi.org/10.1016/j.toxlet.2018.05.027

Received 14 December 2017; Received in revised form 8 May 2018; Accepted 22 May 2018
Available online 22 May 2018

© 2018 Elsevier B.V. All rights reserved.
The SD L-Trp was manufactured by a fermentation process that used a genetically engineered strain of Bacillus amyloliquefaciens (Belongia et al., 1992; Mayeno and Gleich, 1994). The epidemic was essentially curtailed when the FDA removed the suspect L-Trp from the retail market. Analyses of the SD L-Trp by high performance liquid chromatography (HPLC) and HPLC coupled on-line with mass spectrometry (LC–MS) revealed the presence of over sixty contaminants (Tsoyoka et al., 1991; Williamson et al., 1997). Careful and exhaustive epidemiological studies as well as sample lot analyses of contaminated SD L-Trp determined that six contaminants were case-associated with the onset of EMS. These case-associated contaminants were identified as Peaks UV-S, E, 200, C, FF and AAA and named/labeled as a function of their unique HPLC retention times (Hill et al., 1993; Philen et al., 1993).

Structural characterization of all “six” case associated contaminants in SD L-Trp has now been completed. Peak UV-S was identified as 3-(phenylamino)alanine (PAA) (Goda et al., 1992; Mayeno et al., 1992). Peak E was determined to be an acetaldehyde-tryptophan condensation reaction product, namely 1,1′-ethylenedib(tryptophan) using a combination of MS, tandem mass spectrometry (MS/MS), nuclear magnetic resonance (NMR), and synthetic organic chemistry (Mayeno et al., 1990; Smith et al., 1991). Peak 200 was identified as 2-(3-indolylmethyl)-tryptophan using both NMR (Muller et al., 1991), and a combination of LC–MS and LC–MS/MS (Williamson et al., 1997). Peak C was determined by accurate mass LC–MS, LC–MS/MS and multistage mass spectrometry (MSn) to be 3a-hydroxy-1,2,3,3a,8,8a-hexahydro-1H-indol-3-yl)propanoic acid (Williamson et al., 1998b). Peak FF was also subjected to the same analytical protocols as Peak C and identified as 2-(2-hydroxy indoline)-tryptophan (Williamson et al., 1998b). Others have argued that peak FF and Peak AAA, which Hill and coworkers had described as the most statistically significant contaminant in terms of association with EMS cases (Hill et al., 1993; Philen et al., 1993). This contaminant was determined to be actually two different fatty acid derived structural isomers. The structural isomers were identified as AAAa 343 (S)-2-amino-3-[(S,E)-7-methyl-1-en-1-yl)-1H-indol-3-yl]propanoic acid, and AAAa 343 (S)-2-amino-3-(2-(1E)-dec-1-en-1-yl)-1H-indol-3-yl]propanoic acid (Klarskov et al., 2018).

The efforts to determine causal onset of EMS have focused primarily on the structure determination of SD L-Trp tryptophan-case associated contaminants. However, there have been alternative suggestions as to the cause of EMS. Noakes and colleagues have argued that Quinolinic Acid may play a role in “cutaneous eosinophilic disorders” and hence by association with EMS (Noakes et al., 1992). Others have argued that Hill and exhaustively studied samples of the SD L-Trp produced by a single company, Showa Denko K.K. (SD) of Japan was primarily responsible for the EMS outbreak (Belongia et al., 1990; Slutsker et al., 1990). The SD L-Trp was manufactured by a fermentation process that used a genetically engineered strain of Bacillus amyloliquefaciens (Belongia et al., 1992; Mayeno and Gleich, 1994). The epidemic was essentially curtailed when the FDA removed the suspect L-Trp from the retail market. Analyses of the SD L-Trp by high performance liquid chromatography (HPLC) and HPLC coupled on-line with mass spectrometry (LC–MS) revealed the presence of over sixty contaminants (Tsoyoka et al., 1991; Williamson et al., 1997). Careful and exhaustive epidemiological studies as well as sample lot analyses of contaminated SD L-Trp determined that six contaminants were case-associated with the onset of EMS. These case-associated contaminants were identified as Peaks UV-S, E, 200, C, FF and AAA and named/labeled as a function of their unique HPLC retention times (Hill et al., 1993; Philen et al., 1993).

Structural characterization of all “six” case associated contaminants in SD L-Trp has now been completed. Peak UV-S was identified as 3-(phenylamino)alanine (PAA) (Goda et al., 1992; Mayeno et al., 1992). Peak E was determined to be an acetaldehyde-tryptophan condensation reaction product, namely 1,1′-ethylenedib(tryptophan) using a combination of MS, tandem mass spectrometry (MS/MS), nuclear magnetic resonance (NMR), and synthetic organic chemistry (Mayeno et al., 1990; Smith et al., 1991). Peak 200 was identified as 2-(3-indolylmethyl)-tryptophan using both NMR (Muller et al., 1991), and a combination of LC–MS and LC–MS/MS (Williamson et al., 1997). Peak C was determined by accurate mass LC–MS, LC–MS/MS and multistage mass spectrometry (MSn) to be 3a-hydroxy-1,2,3,3a,8,8a-hexahydro-1H-indol-3-yl)propanoic acid (Williamson et al., 1998b). Peak FF was also subjected to the same analytical protocols as Peak C and identified as 2-(2-hydroxy indoline)-tryptophan (Williamson et al., 1998b). Others have argued that peak FF and Peak AAA, which Hill and coworkers had described as the most statistically significant contaminant in terms of association with EMS cases (Hill et al., 1993; Philen et al., 1993). This contaminant was determined to be actually two different fatty acid derived structural isomers. The structural isomers were identified as AAAa 343 (S)-2-amino-3-[(S,E)-7-methyl-1-en-1-yl)-1H-indol-3-yl]propanoic acid, and AAAa 343 (S)-2-amino-3-(2-(1E)-dec-1-en-1-yl)-1H-indol-3-yl]propanoic acid (Klarskov et al., 2018).

The efforts to determine causal onset of EMS have focused primarily on the structure determination of SD L-Trp tryptophan-case associated contaminants. However, there have been alternative suggestions as to the cause of EMS. Noakes and colleagues have argued that Quinolinic Acid may play a role in “cutaneous eosinophilic disorders” and hence by association with EMS (Noakes et al., 1992). Others have argued that Hill and exhaustively studied samples of the SD L-Trp produced by a single company, Showa Denko K.K. (SD) of Japan was primarily responsible for the EMS outbreak (Belongia et al., 1990; Slutsker et al., 1990).
determined either by UV or MS and MS/MS.

2.3. L-Trp sample extraction

SD case-implicated L-Trp was dissolved in 50% aqueous methanol to a concentration of 20 mg/mL. Following sonication for 30 min each sample was centrifuged at 13,000 rpm using a Heraeus Biofuge (Fisher Scientific, Canada). The supernatant was diluted 10x in water and loaded onto a methanol pre-equilibrated and water rinsed C18 solid phase cartridge. After an initial rinsing of the cartridge with 5% (v/v) aqueous methanol, L-Trp contaminants were eluted with 0.5 mL of methanol and vacuum dried. The samples were dissolved in 100 μL 50% (v/v) aqueous acetonitrile containing 0.2% (v/v) formic acid prior to LC-MS/MS analysis.

2.4. Mass spectrometry of SD L-Trp

2.4.1. LC-MS and LC-MS/MS

Separations were done online using an Eksigent micro-UHPLC 200 (Sciex, California, US). Individual samples were injected onto a Polaris C-18 reversed phase Luna Omega column, 50 x 1 mm ID, with a 1.6 μm particle size (Phenomenex, CA, US) by loop overloading using a 5 μL injection loop. A LC gradient consisting of 0.2% (v/v) aqueous formic acid in water as Phase A, and methanol with 0.2% formic acid as Phase B at a flow rate of 60 μL/min. was used with following gradient conditions: (%B/min) 60/0, 60/0.2, 100/5.6, 100/6.3, 40/6.4 40/7. All LC-MS and LC-MS/MS analyses were done in positive mode on a Triple Time-of-Flight (TOF) 5600 (Sciex, California, US) equipped with an electrospray ion source. High resolution TOF-MS survey scans were set against a number of MS and MS/MS spectral databases (Klarskov et al., 2018). The comparative search revealed that the product ion at m/z 168 was structurally similar to that of the aromatic heterocycle carbazole, as shown in the insert of Fig. 1a and b. (Oberacher, 2013; Klarskov et al., 2018). The presence of this product at m/z 168 and its structural identification were crucial in determining that the fatty acid-derived aliphatic chain was attached at the C2 carbon of the indole ring, and contained a double bond at the C1′-C2′ position (Fig. 1a-b) (Klarskov et al., 2018).

2.4.2. LC-MS and LC-MS/MS quantification of AAA1-XXX/AAA2-XXX contaminants

Analytical conditions to carry out the quantification of all AAA1-XXX and AAA2-XXX contaminants present in Showa Denko L-Trp are described above in Section 2.4.1. A calibration curves were constructed using commercially available L-Trp in conjunction with synthetic anteiso AAA2-343. Once the concentration of authentic AAA1-343 in SD L-Trp was determined, we used the relative ion count-area under the curve method to determine the other concentration values of all the AAA1-XXX and AAA2-XXX contaminants present in SD L-Trp.

2.4.3. LC-MS/MS with information-dependent acquisition (IDA)

Separations were done as described above, except that samples were injected onto a C-18 reversed phase HALO column, 100 x 0.5 mm ID, 2.7 μm particle size, 90 Å pore size (Sciex, California, US). The LC gradient consisted of 0.1% (v/v) aqueous formic acid in water as Phase A, and acetonitrile with 0.1% formic acid as Phase B and a flow rate of 35 μL/min. was used with the following gradient: (%B/min) 5/0, 5/0.5, 90/2.3, 90/2.9, 5/3.5. Information-Dependent Acquisition (IDA) mode triggered five dependent MS/MS scans (m/z 50–600 with an accumulation time of 100 ms per scan) per precursor ion when the intensity of the latter was above 75 counts. Precursor ion MS-SCS scans (m/z 200–600) were accumulated in 250 msec with a cycle time of 800 msec. MS/MS spectra that contained a m/z 168 product ion were selectively identified using the PeakView software (Sciex).

3. Results & discussion

“Peak AAA” was recently determined to be two structural isomers, namely AAA1-343 and AAA2-343. They were formed from condensation reactions of L-Trp with bacterial lipid membrane derived fatty acids (Klarskov et al., 2018). Simat has argued that the manufacturing process of SD L-Trp produced six different types of contaminants that included i. bacterial metabolites, ii. oxidation products, iii. carbonyl condensation compounds, iv. 2-substituted−Trp derivatives, v. 1-substituted−Trp derivatives and vi. PAA and related compounds (Simat et al., 1999). The structures AAA1-343 and AAA2-343 are representative aliphatic chains attached to the C7 carbon of such fatty acid derived aliphatic chain containing compounds, would have resulted in very different absorption, distribution, metabolism and excretion profiles of AAA1-343 and AAA2-343 through the body for a person consuming SD L-Trp. This may be of some relevance in ascertaining the causal onset of EMS. Hence, we were interested in determining if other fatty acid derived L-Trp condensation products were present in SD L-Trp.

The structure determination of AAA1-343 and AAA2-343 employed the use of accurate mass LC−MS/MS analysis. The resulting product ion spectra for both AAA1-343 (Fig. 1a) and AAA2-343 (Fig. 1b) revealed an unexpected, but prominent product ion at m/z 168. The relative abundance of this ion indicated a facile fragmentation process that produced a stable product ion. We have previously reported that LC-multistage tandem mass spectrometry (MSM) of the ion at m/z 168 for AAA1-343 and AAA2-343 were identical, and subsequently compared against a number of MS and MS/MS spectral databases (Klarskov et al., 2018). The comparative search revealed that the product ion at m/z 168 was structurally similar to that of the aromatic heterocycle carbazole, as shown in the insert of Fig. 1a and b. (Oberacher, 2013; Klarskov et al., 2018). The presence of this product at m/z 168 and its structural identification were crucial in determining that the fatty acid-derived aliphatic chain was attached at the C2 carbon of the indole ring, and contained a double bond at the C1′-C2′ position (Fig. 1a-b) (Klarskov et al., 2018).

3.1. Precursor ion MS/MS scans of L-Trp

As noted above the prominent product ion at m/z 168 is indicative of compounds derived from a condensation reaction of L-Trp with fatty acids from the Bacillus amyloylaquefaciens lipid membrane. We used the presence of this ion in our MS/MS analyses as a vehicle to search for other possible homologs of AAA1-343 and AAA2-343. We performed an accurate mass precursor ion scan MS/MS analysis of the SD L-Trp extract. In this type of analysis all protonated molecular ions (MH+) are subjected to fragmentation through CID. Following the analysis, MS/MS spectra that contain a specific fragment ion of interest, in this case, m/z 168 can then be selectively plotted (Glish and Vacht, 2003). The resultant precursor ion MS/MS analysis (m/z 168) undertaken on SD L-Trp in IDA mode, exhibited a number of MH+ species shown in Fig. 2. Perusal of these data revealed the presence of an ion series at MH+ = 315.2079; 329.2232; 343.2384; 385.2858 and 399.3011, all differing by multiples of 14 mass units. Since the precursor ion scan was done using accurate mass LC−MS/MS it was possible to determine the molecular formula and the Degree of Unsaturation (DoU) of each MH+ ion. The ion at MH+ = 343.2384, possesses a DoU = 8, and a molecular formula of C18H14N2O2 corresponding to the previously described AAA2-343 fatty acid – L-Trp reaction product shown in Fig. 1a. The other four MH+ ions share the same DoU but differ in their -C2H2O composition (Table 1). These MH+ species afford a product ion (m/z 168) that indicates the presence of an indole C2 linkage with a double bond at the C1′-C2′ position, this suggests that they are fatty acid-L-Trp condensation products of differing aliphatic chain lengths. In specific terms, the ions at MH+ of 315, 329, 385 and 399 may represent the presence of a homologous series of fatty acid condensation products.
with L-Trp containing C₈, C₉, C₁₃ and C₁₄ aliphatic chain lengths respectively. Note that the MH⁺ ions at m/z 277.1193 (DoU = 8; molecular formula C₁₄H₁₇N₂O₄) and m/z 329.1280 (DoU = 15; molecular formula C₂₁H₁₇N₂O₂) denoted in red (Fig. 2) are other L-Tryptophan moieties. They are unrelated to the homologous fatty acid series derived L-Trp condensation products. This conclusion is based on their molecular formulae, DoU and MS/MS product ion spectra, (data not shown).

3.2. Survey scan LC–MS of AAA homologs

The precursor ion scan selection of m/z 168 described above (Fig. 2), only revealed one AAA₁-343 isomer. Taking into account our recent results demonstrating the presence of two isomers, indicated that this LC-MS/MS approach suffered limited HPLC resolution. We performed a survey scan LC-MS ion chromatogram analysis on SD L-Trp employing different HPLC conditions (see Section 2.4.1 above) and scanned for each precursor ion as follows: 315.2 (m/z 290–330), 329.2 (m/z 300–340), 343.2 (m/z 320–370), 385.2 (m/z 350–400) and 399.2 (m/z 370–430). The resultant survey-scan LC-MS ion chromatograms are shown in Fig. 3a–e. Each ion pair possesses individual ion components with identical protonated molecular ions (within experimental error).

The accurate mass MH⁺ ions identified were 315.2073 (AAA₁-315), 315.2090 (AAA₂-315) (Fig. 3a), 329.2237 (AAA₁-329), 329.2232 (AAA₂-329) (Fig. 3b), 343.2386 (AAA₁-343), 343.2386 (AAA₂-343) (Fig. 3c), 385.2847 (AAA₁-385), 385.2841 (AAA₂-385) (Fig. 3d), as well as 399.2982 (AAA₁-399) and 399.3004 (AAA₂-399) (Fig. 3e). Based on the accurate mass data all these precursor ion species possessed a molecular formula of CₙHₙ₊ₓN₂O₂ (where x = 8, 9, 10, 13 or 14), and a DoU = 8 (see both Table 1 and Supplemental Table S1). The ion pair that afforded MH⁺ = 343.2386 is the previously described AAA₁-343 and AAA₂-343 contaminants shown in Fig. 1a and b respectively. The four ion pairs AAA₁-315/AAA₂-315; AAA₁-329/AAA₂-329; AAA₁-385/AAA₂-385, and AAA₁-399/AAA₂-399 (hereafter referred to as AAA₁-XXX and/or AAA₂-XXX) all appear to be fatty acid homologs of L-Trp, and possibly contain anteiso, iso or linear aliphatic...
chains as previously discussed for AAA1-343 and AAA2-343 (Klarskov et al., 2018).

3.3. LC-MS/MS product ion spectra of AAA homologs

In order to further elucidate the structures of the eight potential fatty acid homologs AAA1-XXX and AAA2-XXX compounds in the SD-L-Trp, all selected precursor ions were subjected to very similar ionization and collision conditions employing accurate mass LC-MS/MS. These product ion spectra are shown in Fig. 4a-h. Since these data were acquired in accurate mass MS/MS mode, it was possible to determine both the molecular ion formula and DoU for all product ions shown in Fig. 4a-h. This is summarized in Table 1 for AAA1-315, AAA1-329, AAA1-385, and AAA1-399 as well as Table S1 for AAA2-315, AAA2-329, AAA2-385, and AAA2-399. The product ion spectra of all these contaminants are discussed in detail below.

3.3.1. Product ions from L-Trp amino-carboxylic acid side chain

The product ion spectra of both AAA1-343 and AAA2-343 contained identical ions at m/z 326, 308, 280 and 270 (Fig. 1a and b). They correspond to fragmentation ion losses of (MH+ − NH3) (see Scheme 1, [III]), (MH+ − H2O) (Scheme 1,[III]), (MH+ − H2O − HCOOH) (Scheme 1,[IV]), and (MH+ − HCN − HCOOH) (Scheme 1, [V]) respectively (El-Aribi et al., 2004; Lioe et al., 2004; and Klarskov et al., 2018). Inspection of the product ion spectra of AAA1-315/AAA2-315 (m/z 298, 280, 252, 242); AAA1-329/AAA2-329 (m/z 312, 294, 266, 256); AAA1-385/AAA2-385 (m/z 368, 350, 322, 312) and AAA1-399/AAA2-399 (m/z 382, 364, 336, 326) revealed that the same fragmentation losses occur for all the contaminants (see Fig. 4a-h, and Table 1 and Table S1). These fragment ion losses and resulting product ion structures ([III], [III], [IV], and [VI]) are shown in Scheme 1 for all eight members of the AAA1-XXX and AAA2-XXX homologous series of contaminants. These ion series and the associated fragmentation losses clearly indicate that neither the L-Trp amino nor the carboxylic acid functional groups in AAA1-XXX and AAA2-XXX are modified.

3.3.2. Product ion series from the indole ring

The eight product ion spectra of the AAA1-XXX and AAA2-XXX

Table 1 Accurate mass MS/MS Product ion data for AAA homologous series, namely AAA1-315, AAA1-329, AAA1-343, AAA1-385, and AAA1-399.

<table>
<thead>
<tr>
<th>Number in Scheme 1*</th>
<th>Measured Mass</th>
<th>Measured Mass</th>
<th>Measured Mass</th>
<th>Measured Mass</th>
<th>Measured Mass</th>
<th>DoU</th>
<th>Molecular Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA1-315</td>
<td>43.0567</td>
<td>43.0556</td>
<td>43.0585</td>
<td>43.0570</td>
<td>43.0561</td>
<td>1st</td>
<td>C18H7</td>
</tr>
<tr>
<td>Not Shown</td>
<td>57.0721</td>
<td>57.0713</td>
<td>57.0737</td>
<td>57.0710</td>
<td>57.0711</td>
<td>1st</td>
<td>C18H7</td>
</tr>
<tr>
<td>Not Shown</td>
<td>71.0856</td>
<td>71.0865</td>
<td>71.0883</td>
<td>71.0863</td>
<td>71.0860</td>
<td>1st</td>
<td>C18H11</td>
</tr>
<tr>
<td>[XII]</td>
<td>118.0662</td>
<td>118.0656</td>
<td>118.0657</td>
<td>118.0659</td>
<td>118.0665</td>
<td>6</td>
<td>C18H8 N</td>
</tr>
<tr>
<td>[XI]</td>
<td>130.0651</td>
<td>130.0653</td>
<td>130.0660</td>
<td>130.0654</td>
<td>130.0659</td>
<td>7</td>
<td>C18H6 N</td>
</tr>
<tr>
<td>[XI′]</td>
<td>144.0813</td>
<td>144.0813</td>
<td>144.0815</td>
<td>144.0813</td>
<td>144.0814</td>
<td>7</td>
<td>C18H10 N</td>
</tr>
<tr>
<td>[VII′]</td>
<td>168.0813</td>
<td>168.0813</td>
<td>168.0811</td>
<td>168.0813</td>
<td>168.0813</td>
<td>9</td>
<td>C18H10 N</td>
</tr>
<tr>
<td>[VII]</td>
<td>182.0963</td>
<td>182.0968</td>
<td>182.0964</td>
<td>182.0971</td>
<td>182.0973</td>
<td>9</td>
<td>C18H12 N</td>
</tr>
<tr>
<td>[V′]</td>
<td>238.1591</td>
<td>252.1750</td>
<td>266.1888</td>
<td>308.2378</td>
<td>322.2544</td>
<td>9</td>
<td>C17/18/19/22/23 H20/22/24/30/32 N</td>
</tr>
<tr>
<td>[V′]</td>
<td>242.1908</td>
<td>256.2066</td>
<td>270.2210</td>
<td>312.2689</td>
<td>326.2842</td>
<td>7</td>
<td>C17/18/19/22/23 H20/24/26/28/34 N</td>
</tr>
<tr>
<td>[IV′]</td>
<td>252.1743</td>
<td>266.1914</td>
<td>280.2048</td>
<td>322.2543</td>
<td>336.2702</td>
<td>9</td>
<td>C18/19/20/23/24 H22/24/26/32/34 N</td>
</tr>
<tr>
<td>[I′]</td>
<td>315.2073</td>
<td>329.2237</td>
<td>343.2386</td>
<td>385.2847</td>
<td>399.2982</td>
<td>8</td>
<td>C19/20/21/24/25 H27/29/31/37/39 N2 O2</td>
</tr>
</tbody>
</table>

a See Scheme 1 for corresponding precursor or product ion structure.

b Degrees of Unsaturation (DoU) for the uncharged molecular species.

c Molecular Composition for the protonated charged ion species.

d These ions can either be protonated charged ion or radical cation ion species.
contaminants (Fig. 4a-h) as well as AAA₁-343 and AAA₂-343 (Fig. 1a-b) all contained product ions at m/z 144 ([IX] and [X], Scheme 1), 130 ([XI], Scheme 1) and 118 ([XII], Scheme 1), and also see Table 1 and Table S1. These ions confirm the presence of an intact indole ring of L-Trp (El Aribi et al., 2004). This ion series also indicates that the benzene ring (C-4 through C-7) of the indole moiety has not been substituted for any of the AAA₁-XXX or AAA₂-XXX family of contaminants (see Scheme 1). In contrast, a MS/MS analysis of a substituted indole, e.g. 5-hydroxy-tryptophan, exhibited a product ion series at m/z 162, 146 and 134, reflecting the presence of a hydroxylated indole ring at C-5. (Williamson et al., 1998b).

3.3.3. Product ion at m/z 168, and related ion series

Analyses of both AAA₁-343 and AAA₂-343 (Fig. 1a and b) and all eight AAA₁-XXX and AAA₂-XXX product ion spectra (Fig. 4a-h) revealed a prominent product ion at m/z 168. As discussed above, the relative abundance of this ion in all product ion spectra indicates a facile fragmentation process that produces a stable carbazole product ion (Scheme 1, [VIII]). It is noteworthy that MS/MS spectra of AAA₁-343 and AAA₂-343 contain ions at m/z 266 and 182 (Fig. 1a and b; Table 1 and S1) structurally related to m/z 168. Multistage tandem MS (MSⁿ) analyses of the m/z 266 and 182 ions both afforded the carbazole ion at m/z 168 (Klarskov et al., 2018).

Analysis of the product ion spectra of AAA₁-315/AAA₂-315 (m/z 238 and 182); AAA₁-329/AAA₂-329 (m/z 252 and 182); AAA₂-385/
Fig. 4. Product ion accurate mass LC-MS/MS spectra of SD L-Trp.
a) AAA₁-315; b) AAA₂-315.
c) AAA₁-329; d) AAA₂-329.
e) AAA₁-385; f) AAA₂-385.
g) AAA₁-399; h) AAA₂-399.
* This product ion is a contaminant derived from the LC column.
AAA₂⁻385 (m/z 308 and 182) and AAA₁⁻399/AAA₂⁻399 (m/z 322 and 182) revealed that the same fragment ion losses (see Scheme 1, [VI] and [VII] respectively) occur for all the contaminants (see Fig. 4a-h, and Table 1 and Table S1). These MS/MS data for the product ions [VI, VII, and VIII] indicate that the aliphatic hydrocarbon chain is attached at the C-2 carbon of the indole ring. These data suggest that the ninth DoU is due to a double bond at the C₁’-C₂’ position of the aliphatic chain. Only this regiochemistry and double bond location facilitates a energetically favoured intramolecular Diels-Alder ring formation (Demarque et al., 2016) of product ions [II] and [III] to afford the stable tricyclic ion at m/z 168 [VIII], as well as the tricyclic product ions [VI] and [VII], as seen in Scheme 1.

3.3.4. Aliphatic chain product ion series

The product ion spectra of AAA₁⁻343 and AAA₂⁻343 (Fig. 1a-b) and AAA₁-XXX/AAA₂-XXX Fig. 4a-h), all contained a low mass product ion series at m/z 57, and 43 which could either be protonated fragment ion (DoU = 1), or radical cations (DoU = 0) (see Table 1 and Table S1). It has been argued that such ions are typically produced by a charge-remote fragmentation process (Demarque et al., 2016), and are indicative of an aliphatic hydrocarbon chain often derived from a fatty acid (Murphy, 2015; Seto et al., 2001). Thus, this ion series clearly provides evidence that an aliphatic hydrocarbon chain is present in all eight AAA₁-XXX and AAA₂-XXX homologs (Klarskov et al., 2018). However, LC-MS/MS data alone were not sufficient to definitively identify the aliphatic chain isomers of the AAA₁-XXX and AAA₂-XXX compounds.

3.4. Aliphatic side chain isomer identification

We reported previously that AAA₁⁻343 was formed by the intermolecular condensation reaction of L-Trp with anteiso-(S)-7-methylnonanoic acid, and AAA₂⁻343 by the condensation reaction of L-Trp with n-decanoic acid. The anteiso to linear ratio was determined to be ~3:1 (Klarskov et al., 2018). These findings were predicated on the comparative analyses of HPLC retention times, accurate mass LC-MS, LC-MS/MS, and MSⁿ for AAA₁⁻343 and AAA₂⁻343 versus three synthetic standards, namely the anteiso isomer (S)-2-amino-3-(2-(S,E)-7-methylnon-1-en-1-yl)-1H-indol-3-yl)propanoic acid, iso isomer (S)-2-amino-3-(2-(S,E)-8-methylnon-1-en-1-yl)-1H-indol-3-yl)propanoic acid, and linear isomer (S)-2-amino-3-(2-(E)-dec-1-en-1-yl)-1H-indol-3-yl)propanoic acid (Klarskov et al., 2018). Here we discuss the structure determination of the aliphatic chain isomer forms of AAA₁-XXX and AAA₂-XXX predicated on the original structure determination of AAA₁⁻343 and AAA₂⁻343.

attachment:Scheme 1. Product ion mass spectral analysis of AAA₁⁻343/AAA₂⁻343 as well as the AAA₁-XXX/AAA₂-XXX homolog ion species. Proposed product ion fragmentation pathways and structures based on MS/MS and MSⁿ analyses (Klarskov et al., 2018). The actual protonated molecular masses for individual ions are shown in Table 1 and 1S.
3.4.1. MS/MS product ions

As described above the detection of a product ion at m/z 57 can indicate the specific presence of an anteiso aliphatic-branched chain (Christie, 2017; Murphy, 2015; Ran-Ressler et al., 2011). This ion was indeed detected in the MS/MS product ion spectrum of anteiso AAA-343 (Fig. 1a). The ratio of m/z 168 (MS/MS internal control ion) to m/z 57 was determined to be 49.4. However, inspection of the linear isomer AAA-343 (Fig. 1b) also revealed an ion at m/z 57, albeit at lower relative abundance with the ratio of m/z 168 to m/z 57 at 54.9. In the case of AAA-399 versus AAA-399 the relative ratio of m/z 168 to m/z 57 was 27.0-33.9 (Fig. 4a and b); AAA-385 versus AAA-385 was 35.8-41.6 (Fig. 4c and d); and for AAA-329 versus AAA-329 is 43.7-0.19 min. and 0.18 min. respectively (Table 2). Based on this comparison with AAA-343/AAA-343 as well as the synthetic anteiso, iso, and linear standards, these isomer pairs AAA-329/AAA-329 and AAA-315/AAA-315 can only be the anteiso (AAA) and linear (AAA) isomers. In the case of the AAA-385/AAA-385 and AAA-399/AAA-399 ion pairs the HPLC retention time differences were slightly lower in value at 0.13 min and 0.18 min respectively (Table 2). These data again indicate that each ion pair likely consists of the anteiso (AAA) and linear (AAA) isomers. However these latter retention time differences could also possibly indicate the presence of iso (AAA) and linear (AAA) isomer pairs predicated on the synthetic standards analysis (iso in linear difference, 0.11 min.) discussed above.

A number of studies have previously demonstrated that there is a linear correlation between increasing fatty acid aliphatic chain length and HPLC retention time in a homologous series (Brouwers et al., 1999; Smith and Jungwalla, 1981; Zhai and Reilly, 2002). Based on this consideration analyses of individual ion pair components and differences in aliphatic chain length were revealing (Table 2). The difference in retention times of AAA-343 versus AAA-329 versus AAA-315 was identical at (-) 0.4 min. (Table 2 and Fig. 3a-c). This data reflects an iterative subtractive difference of a single methylene (-CH₂) group from C16 (AAA-343) to C14 (AAA-329) to C12 (AAA-315) aliphatic chain. This same identical trend was also observed for the difference in retention times of AAA-329 versus AAA-329 at 0.4 min. and AAA-329 versus AAA-315 at 0.41 min. (Table 2 and Fig. 3a-c). These data lead to the conclusion that the isomer pairs AAA-329/AAA-329 and AAA-315/AAA-315 can only be the anteiso (AAA) and linear (AAA) isomers.

The linear correlation of increased chain length versus increased relative retention time continued to hold for AAA-343/AAA-343 versus AAA-385/AAA-385 versus AAA-399/AAA-399 (Table 2 and Fig. 3c-e). In the case of AAA-385 an increased chain length of 3 x (-CH₂) compared to AAA-343 should lead to a predicted retention time difference of 1.20 min., and the actual measured difference was 1.14 min. (Table 2, Fig. 3c and d). The observed retention time difference between AAA-385 and AAA-399 was 0.33 min (Table 2 and Fig. 3d and e) compared to the predicted of 0.4 min. However consideration of AAA-343 versus AAA-385 versus AAA-399 revealed very similar retention time differences of 1.14 min. and 0.32 min. respectively compared to the AAA compounds (Table 2 and Fig. 3c-e). All these data are consistent with AAA-385/AAA-385 and AAA-399/AAA-399 also being the anteiso and linear isomer pairs.

3.5. Structure determination summary for fatty acid homologs

The presence of the prominent product ion at m/z 168 (Scheme 1 [VIII] in all fatty acid homologs (Fig. 4a-h) in combination with specific related product ions (Scheme [VI] and [VII]) and analyses of other synthetic standards (discussed in detail elsewhere; Klarsov et al., 2016) indicates the presence of the prominent product ion at m/z 168 (Scheme 1 [VIII], [V] and [VI]) and [VII] in all fatty acid homologs (Fig. 3c and d). In addition, it has been reported that in the case of AAA, anteiso fatty acids the chiral carbon containing the branched methyl group is always in the (S) configuration (Hauff et al., 2010; Christie, 2017). Therefore we postulate that for all of the fatty acid homolog AAA-XXX series the chiral centers are both (S), and for the AAA-XXX series the amino-containing α-carbon is also (S).

The structure determination of an unknown(s) is a complicated process. Disas and colleagues in their recent paper have argued, *MS alone is not able to unambiguously identify a molecule and must rely on complementary sources of information (e.g., chromatographic retention time, or MS/MS,)* (Disas et al., 2016). Accordingly, the following guidelines for structure determination of metabolites and other small molecules have been met and are as follows:

*Confident identifications are based upon a minimum of two
different pieces of confirmatory data relative to an authentic standard. We have provided three such confirmatory data sets relative to characterized synthetic standards. They include accurate mass MS, accurate mass MS/MS and MS*, and LC-MS retention time data.

2. Putatively annotated compounds and putatively characterized compound classes should be compared to the metabolite or other small molecule. We have discussed in detail the MS/MS spectra of authentic SD L-Trp derived AAA-315 and AAA-343 and compared and contrasted these data to that published in the literature/database for component elements of these contaminants.

Subsequently, we compared the HPLC retention times, accurate mass MS, accurate mass LC-MS/MS and accurate mass MS/MS datasets of AAA-XXX and AAA-XXX homologs to both synthetic and SD L-Trp derived AAA-343 and AAA-343. Consideration of all of these elements satisfy the current criteria for the structure determination of, in this case, the fatty acid L-Trp homolog contaminants found in SD L-Trp. These contaminants have been identified as (S)-2-amino-3-((S,E)-3-methylhept-1-en-1-yl)-1H-indol-3-yl)propanoic acid (AAA-315); (S)-2-amino-3-((E)-oct-1-en-1-yl)-1H-indol-3-yl)propanoic acid (AAA-315); (S)-2-amino-3-((S,E)-6-methyloct-1-en-1-yl)-1H-indol-3-yl)propanoic acid (AAA-329); (S)-2-amino-3-((E)-non-1-en-1-yl)-1H-indol-3-yl)propanoic acid (AAA-329); (S)-2-amino-3-((S,E)-10-methylundec-1-en-1-yl)-1H-indol-3-yl)propanoic acid (AAA-385); (S)-2-amino-3-((E)-tridec-1-en-1-yl)-1H-indol-3-yl)propanoic acid (AAA-385); (S)-2-amino-3-((S,E)-11-methyltridec-1-en-1-yl)-1H-indol-3-yl)propanoic acid (AAA-399); and (S)-2-amino-3-((E)-tetradec-1-en-1-yl)-1H-indol-3-yl)propanoic acid (AAA-399). All these structures are shown in Fig. 5.

3.6. Quantification of AAA-XXX and AAA-XXX contaminants

Prior to the EMS outbreak, L-Trp was perceived as a safe, and effective dietary supplement. As such, individuals self-medicated and typically used L-Trp for insomnia, depression and premenstrual syndrome (UK Committee on Toxicology (COT), 2004). Individually in the UK usually ingested 1–2 tablets or capsules containing 500 mg of L-Trp per unit dose (UK Committee on Toxicology (COT), 2004). Daily intake in the USA was more variable and ranged from ∼500 mg- >4000 mg per day (Henning et al., 1993; Vierck, 2018). Kamb suggested that among patients taking >4000 mg of SD L-Trp “the definite EMS attack rate was 59% and the pooled attack rate (definite and possible EMS) was 84%” (Kamb et al., 1992). Belongia supported these findings by suggesting, “that exposure to higher doses of L-Trp may have contributed to the pathogenesis of EMS”, and that a “dose-response relationship” had been observed between SD L-Trp ingested and EMS onset (Belongia, 2004). Since dose was potentially related to EMS onset, we determined the amounts of AAA-XXX and AAA-XXX contaminants present in SD L-Trp.

Initially we determined the amount of AAA-343 present in SD L-
Kilbourne has noted that in TOS, “Virtually all patients had absolute eosinophil counts > 50 cells/mm3, but counts of > 2000 cells/mm3 were common, in contrast to normal levels in healthy humans of 50–350 cells/mm3. Eosinophilia was so frequent as to be considered a hallmark of the disease”. He noted also that “Patients with EMS typically come [sic] to medical attention because of persistent and severe myalgia, much like that associated with intermediate and chronic- and to some extent in acute-TOS. The eosinophil count is dramatically increased, usually > 2000 cells/mm3” (Kilbourne et al., 1991).

In addition there were numerous other common symptoms that included liver enzyme elevation, selective inflammation of intramuscular nerve and muscle spindles, axonal neuropathy and severe myalgia (Gelpi et al., 2002; Kilbourne et al., 1991).

Common symptomology often indicates a shared etiology of different disease states (Naylor and Chen, 2010). We have argued previously that there may be a common causal contaminant(s) since both TOS and EMS onset appeared to have strong associations with ingested, contaminated food (oil; TOS) and dietary supplement (L-Trp; EMS) (Mayeno et al., 1995). Aniline contaminants, including 3-(phenylamino)-1,2-propanediol (PAP), have been identified in the adulterated oil used by patients who developed TOS. A related aniline derivative, PAA was identified as a case-associated contaminant isolated from SD L-trypthan associated with the onset of EMS. We demonstrated that it was possible to bio-transform PAP into PAA using both rat hepatocytes and human liver tissue. Our stated conclusions were, that “this finding is the first reported chemical link between TOS and EMS and suggests that eosinophilic diseases share a common etiology, namely, PAA” (Mayeno et al., 1995).

The structure determination of AAA$_2$-343/AAA$_2$-343 and AAA$_2$-XXX/AAA$_2$-XXX has revealed a family of closely related L-Trp aliphatic chain condensation products. It is noteworthy that during the 1990’s analyses of toxic oil contaminants using LC-MS/MS revealed a number of “new” compounds “associated with the risk of disease”. The contaminants were identified as fatty acid esters of PAP, namely the 1-oleyl-ester (O-PAP) and 1,2-di-oleyl ester (OO-PAP). These structures are shown in Fig. 6 (Gelpi et al., 2002). O-PAP, OO-PAP and the AAA family members share structural features, i.e. an electron-rich aromatic ring connected to an unsaturated aliphatic chain, which may suggest they share similar absorption, distribution, metabolism, and excretion pathways upon ingestion. These structural similarities raise the intriguing prospect that it may actually be metabolites of these case-associated contaminants that caused EMS or TOS onset. This consideration has rarely, if ever been addressed. Our work and others have been primarily focused on the structure determination of the actual contaminants (Goda et al., 1992; Muller et al., 1991; Mayeno et al., 1990; Mayeno et al., 1992; Smith et al., 1991; Williamson et al., 1997; Williamson et al., 1998b). More recently we have noted the importance of such a possibility and suggest this warrants more consideration using appropriate animal models (Naylor, 2017).

4. Conclusions

We have determined the structures of eight new members of the AAA family of contaminants present in SD L-Trp. All eight compounds are structural homologs of AAA$_2$-343 and AAA$_2$-343. Hill and coworkers described previously that “Peak AAA” was the most statistically significant contaminant in terms of association with EMS cases (Hill et al., 1993; Philen et al., 1993). It is however unclear at the moment whether these structural homologs may have contributed to the causal onset of EMS in patients who ingested SD L-Trp. But it is noteworthy that such compounds are lipid soluble and hence may result in bioaccumulation in adipose tissue. However the structural similarities of the AAA family to the TOS case-related contaminants O-PAP and OO-PAP are intriguing. We suggest that this is the second example of commonality between case associated contaminants in both TOS oil and EMS L-Trp.

Prostaglandin D$_2$ is a major mast cell mediator and a potent eosinophil chemo-attractant and is thought to be involved in eosinophil recruitment to sites of allergic inflammation (Hitai et al., 2001). The presence of unsaturated aliphatic chains in Prostaglandin D$_2$ and its role in eosinophil chemotaxis lends some support to the fact that such a presence, in the AAA family and O-PAP/OO-PAP may play a role in eosinophil recruitment. These consistent structural homologies may afford opportunity to further elaborate the possible etiological role of the AAA family in the causal onset of EMS in patients that consumed SD L-Trp.

Conflict of interests

None

Transparency document

The Transparency document associated with this article can be found in the online version.

Acknowledgements

SN and GG thank Mayo Foundation and NIH (Grant AI-31155) for funding the original work carried out at Mayo Clinic. KK acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC-Grant RGPIN-2014-04234) and KK and EM thank the Centre de Proteomique Structurale et Fonctionnelle des Proteomes (University of Sherbrooke) for a pilot project grant. We also thank Ms. Lois Vierk (President) and Members of the National Eosinophilia Myalgia Syndrome Network (http://www.nemsn.org) for their help in